posets - definitie. Wat is posets
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is posets - definitie


Posets–Maladeta Natural Park         
  • Natural Park of Posets–Maladeta
  • Maladeta peak]] and Benasque Valley panoramic
PROTECTED AREA IN SPAIN
Natural Park of Posets-Maladeta; Posets Maladeta Natural Park; Posets-Maladeta Natural Park
The Natural Park of Posets–Maladeta is a Natural park located in northern Province of Huesca, Aragón, northeastern Spain. It is set within the Pyrenees .
Differential poset         
  • A Hasse diagram of Young's lattice
  • The [[Young–Fibonacci graph]], the [[Hasse diagram]] of the Young–Fibonacci lattice.
MATHEMATIC PARTIALLY ORDERED SET
Differential posets
In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.
poset         
  • '''Fig. 3''' Graph of the divisibility of numbers from 1 to 4. This set is partially, but not totally, ordered because there is a relationship from 1 to every other number, but there is no relationship from 2 to 3 or 3 to 4
  • least}} element.
  • '''Fig.6''' Nonnegative integers, ordered by divisibility
  • '''Fig.2''' [[Commutative diagram]] about the connections between strict/non-strict relations and their duals, via the operations of reflexive closure (''cls''), irreflexive kernel (''ker''), and converse relation (''cnv''). Each relation is depicted by its [[logical matrix]] for the poset whose [[Hasse diagram]] is depicted in the center. For example <math>3 \not\leq 4</math> so row 3, column 4 of the bottom left matrix is empty.
SET ORDERED BY A TRANSITIVE, ANTISYMMETRIC, AND REFLEXIVE BINARY RELATION
PartialOrderedSet; PartialOrder; Partial order; Poset; Partial ordering relation; Partial ordering; Partially ordered; Strict order; Partially ordered sets; Ordered n-tuple; Strict partial ordering; Strict partial order; Poset category; Ordered collection; Non-strict order; Ordered set; Strict ordering; Interval (partial order); Ordinal sum; Partial Order; Partially-ordered set